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The Nonlinear ILW System

We consider the nonlinear ILW system

ηt = [(1−αη)u]x
ut = ηx −αuux

with initial data

η(x ,0) = η0(x), u(x ,0) = u0(x).

t denote the time variable and the spatial variable x stands in

R or T= [−π,π] (periodic functions).

higidio@ufpr.br UFPR



Questions

1 Existence of local solutions?
2 Blow up? or Global solutions?
3 Other properties?
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A Friendly System

A system with more properties is given by

ηt = [(1−αη)u]x
ut = ηx −αuux +M(u)+N(u)

where M(u) denote dispersive terms and N(u) denote dissipative
terms.

Some dispersive terms are

uxxt , H(uxt), T (uxt), uxxx , etc.

Some dissipative terms are

δuxx , H(ux), T (ux), −uxxxx , etc.
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Our problem

We will study the following nonlinear system

ηt = [(1−αη)u]x
ut = ηx −αuux +δuxx

with initial data

η(x ,0) = η0(x), u(x ,0) = u0(x).

where the spatial variable stands at

x ∈ T= [−π,π] (periodic solutions).
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Questions

1 Existence of local solutions?
2 Blow up? or Global solutions?
3 Smoothing properties?
4 Asymptotic behavior?
5 Who is the limit?
6 Speed of this asymptotic behavior?

higidio@ufpr.br UFPR



The nonlinear system can be written in the abstract framework

d
dt

U = A0U +AF(U),

where

U =

(
η

u

)
, A=

[
∂x 0
0 ∂x

]
, A0 =

[
0 ∂x

∂x δ∂xx

]
,

F(U) =

(
−αηu
−αu2/2

)
.
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We will work in the space

Hs = Hs(T)×Hs(T), s ≥ 0

with the the inner product

〈U1,U2〉= 〈η1,η2〉Hs(T)+ 〈u1,u2〉Hs(T).

This operators are defined in

D(A) =Hs+1, D(A0) = {U ∈Hs : A0(U) ∈Hs}

and

D(F) =Hs (for s > 1/2).
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Note that D(A0) is characterized by

D(A0) = {U ∈Hs : u ∈ Hs+1(T),η+δux ∈ Hs+1(T)}.

is easy to see that

Hs+1(T)×Hs+2(T)⊂ D(A0)⊂Hs.

Therefore A0 is densely defined.
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Some properties of the linearized system are preserved by the
nonlinear system. In this case the linearized system is

ηt = ux ,

ut = ηx +δuxx .

This system can be written in the abstract framework by

d
dt

U = A0U.
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Theorem

A0 is the generator of a contractions semigroup.

We use the following result:

Theorem (Lumer-Phillips)

Let A be a operator in a Hilbert space X. Then, A is the generator of a
contractions semigroup if and only if it is densely defined and
m-dissipative.

Definition: A is m-dissipative if

Re〈AU,U〉X ≤ 0 and Im(λI−A) = X

for some λ > 0.
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Proof
We have

Re〈A0U,U〉=−δ‖ux‖2 < 0,

then, the operator A0 is dissipative. Let F ∈Hs, solving the equation

(I−A0)U = F is equivalent to solve ̂(I−A0)U = F̂ . If µ = η̂, ω = û is
equivalent to solve the system

µ− ikω = f

ω− ik(µ+ iδkω) = g

where (f ,g) = F̂ . The solutions are

µ =
(1+δk2)f + ikg

1+δk2 + k2 , ω =
g+ ikf

1+δk2 + k2 .

after some computations we verify U ∈ D(A0).
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With the above theorem for each initial data U0 ∈ D(A0), we have a
unique global solutions U(t) = etA0U0 for the linearized system in the
space

U ∈ C([0,∞[,D(A0))∩C1([0,∞[,Hs).
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Theorem

The semigroup {etA0}t≥0 is analytic.

we use the following result:

Theorem (a particular case of this theorem is proved in Liu’s book)

Let A the generator of a contractions semigroup {etA}t≥0. If the
following conditions

1 ρ(A)⊃ iR\{0} and
2 ‖R(iλ,A)‖ ≤ C

|λ| , for all λ ∈ R, λ 6= 0

are satisfied, then {etA}t≥0 is an analytic semigroup.
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Proof
We will use the discrete Fourier transform to show this theorem. If
(µ,ω) denote the Fourier transform of U = (η,u). The system
(iλI−A0)U = F , for λ ∈ R is satisfied if

iλµ− ikω = f ,

iλω− ik(µ+ iδkω) = g.

Solving this equations we have

µ =− i(λ− iδk2)f + ikg
λ2− iδk2λ+ k2 , ω =− iλg+ ikf

λ2− iδk2λ+ k2 .

After some computations we have

‖U‖ ≤ C
|λ|
‖F‖, λ 6= 0.

From this estimate we conclude that

ρ(A0)⊃ iR\{0} and ‖λ(iλI−A0)
−1‖ ≤ C
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Returning to the nonlinear system

Applying the technique of parameters variations, the solution of the
nonlinear system must satisfy the Duhamel’s formula

U(t) = etA0U0 +
∫ t

0
e(t−s)A0AF(U(s)) ds

If we consider the operator

(GU)(t) = etA0U0 +
∫ t

0
e(t−s)A0AF(U(s)) ds

we use some theorem of fixed point to find solutions of the nonlinear
system.
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Because AA0 = A0A in D(A0)∩D(A) we can verify that A commute
with e(t−s)A0 em D(A), and in this case

(GU)(t) = etA0U0 +
∫ t

0
Ae(t−s)A0F(U(s)) ds

= esA0U0 +
∫ t

0
AesA0F(U(t− s)) ds.

Difficulty: unfortunately the operator AetA0 blow up at t = 0. I explain:
it can be show that the function t → AetA0 are continuous in L(Hs) for
t > 0. The blow up is consequence of this fact

AetA0 → A, when t → 0+ and A 6∈ L(Hs).
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Therefore we need some kind control on ‖AetA0‖ near to t = 0.
It is known that A0etA0 is a limited operators for t > 0 and

‖A0etA0‖ ≤ C
t
, t > 0,

Because the operator A is more “weak” than A0, it is possible to show
the same inequality, that is

‖AetA0‖ ≤ C
t
, t > 0,

but this do not help me.
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Theorem

There exist θ ∈]0,1[ such that

‖AetA0‖ ≤ C
tθ

Corollary

we have the following estimate∫ t

0
‖AesA0‖ ds ≤ C

1−θ
t1−θ, ∀t > 0.
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Some estimates for the nonlinear term

F(U) =

(
−αηu
−αu2/2

)
⇒ DF(U) =

[
−αu −αη

0 −αu

]
Therefore ‖DF(U)‖ ≤ C‖U‖. Since

F(U2)−F(U1) =
∫ 1

0
DF
(
U1 + r(U2−U1)

)
(U2−U1) dr ,

it follows that

‖F(U2)−F(U1)‖ ≤ C(‖U1‖+‖U2‖)‖U2−U1‖.

Consequently, if ‖U1−U0‖ ≤ R, ‖U2−U0‖ ≤ R for some U0, we have

‖F(U2)−F(U1)‖ ≤ C(R+‖U0‖)‖U2−U1‖.
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Theorem (Local solutions)

For U0 ∈ D(A0), the nonlinear system has a unique solution em
C([0,T ],Hs) for some T > 0

Proof

Let T > 0, R > 0, we consider the subset of the space C([0,T ],Hs):

MT =
{

U ∈ C([0,T ],Hs) : U(0) = U0, U(t) ∈ BR(U0)
}
.

We define the operator G :MT → C([0,T ],Hs) given by

G(U)(t) = etA0U0 +
∫ t

0
AesA0F(U(t− s)) ds.
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we have

‖G(U)(t)−U0‖

≤ ‖etA0U0−U0‖+
∫ t

0
‖AesA0‖(‖F(U(t− s))−F(U0)‖+‖F(U0‖) ds

≤ ‖etA0U0−U0‖+
(∫ t

0
‖AesA0‖ ds

)
{CR(R+‖U0‖)+‖F(U0‖}

≤ ‖etA0U0−U0‖+C(θ)t1−θ {CR(R+‖U0‖)+‖F(U0‖} .

Taking T small we have

‖G(U)(t)−U0‖ ≤ R, ∀t ∈ [0,T ].

This shows that G(MT )⊂MT for T small.
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On the other hand,

‖G(U2)(t)−G(U1)(t)‖

≤
∫ t

0
‖AesA0‖‖F(U2(t− s))−F(U1(t− s))‖ ds

≤
(∫ t

0
‖AesA0‖ ds

)
C(R+‖U0‖)‖U2−U1‖C([0,T ],Hs)

≤ C(θ)t1−θ(R+‖U0‖)‖U2−U1‖C([0,T ],Hs).

Taking T small we have that G is a contraction operator.
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Questions

1 Existence of local solutions? OK
2 Blow up? or Global solutions? still trying!
3 Smoothing properties? it’s possible
4 Asymptotic behavior?
5 Who is the limit?
6 Speed of this asymptotic behavior?
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Asymptotic behavior

If (η∞(x),u∞(x)) is the limit of the solutions (η(x , t),u(x , t)) when
t → ∞, then (η∞,u∞) is the solution of the stationary system

[(1−αη)u]x = 0,

ηx −αuux +δuxx = 0.

But the solutions of this this system are constants. Therefore η∞, u∞

are constants. On the other hand, from the preserved amounts∫
π

−π

η(x , t) dx =
∫

π

−π

η0(x) dx ,
∫

π

−π

u(x , t) dx =
∫

π

−π

u0(x) dx

we conclude that

η∞ =
1

2π

∫
π

−π

η0(x) dx , u∞ =
1

2π

∫
π

−π

u0(x) dx .
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If we introduce the notation

h̃ =
1

2π

∫
π

−π

h(x) dx ,

the space Hs
0(T) = {h ∈ Hs(T) : h̃ = 0} is a closed subspace of

Hs(T). Consequently, the space

Hs
0 = Hs

0(T)×Hs
0(T)

is a closed subspace of Hs. Therefore, it is Hilbert subspace.
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Now, note that, if (η,u) ∈Hs is a solution of the nonlinear system if
and only if (η− η̃0,u− ũ0) is a solution of the following auxiliary
nonlinear system

ηt = β1ηx +β2ux −α(ηu)x ,

ut = β3ηx +β4ux −αuux +δuxx ,

where

β1 = β4 =−αũ0, β2 = 1−αη̃0, β3 = 1.

Moreover, we have

(η− η̃0,u− ũ0) ∈Hs
0.
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The auxiliary system can be write as

d
dt

U = A0U +AF(U)

where

A=

[
∂x 0
0 ∂x

]
, A0 =

[
β1∂x β2∂x

β3∂x β4∂x +δ∂xx

]
, FU =

(
−αηu
−αu2/2,

)
with domains

D(A) =Hs+1, D(A0) = {U ∈Hs : A0(U) ∈Hs}
D(F) =Hs (s > 1/2)
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Properties of the new operator A0

1 A0 is a semigroup of contractions {etA0}t≥0 in the space Hs with
the appropriate inner product.

2 The subspace Hs
0 is invariant for this semigroup. That is,

etA0(Hs
0)⊂Hs

0.
3 The semigroup {etA0}t≥0 is analytic in Hs.
4 The semigroup {etA0}t≥0 is analytic and exponentially stable in

Hs
0. (‖etA0‖ ≤Me−γt , γ > 0).

5 ‖AetA0‖ ≤ C
tθ

, for some θ ∈]0,1[

Thus, we have the local solutions for the auxiliary system in Hs.
Global solution? still trying!
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Theorem
For the solutions of the nonlinear system we have

‖η− η̃0‖Hs(T)+‖u− ũ0‖Hs(T) ≤ Ce−γt .

where the constant C depends of the initial data.

Proof

We multiply the auxiliary system by eγt . Thus, the functions
(eγtη,eγtu) satisfy the following system

ηt = (β1 + γ)ηx +β2ux −αe−γt(ηu)x ,

ut = β3ηx +(β4 + γ)ux −αe−γtuux +δuxx .

The operator of the linear part of this system is

Aγ =

[
(β1 + γ)∂x β2∂x

β3∂x (β4 + γ)∂x +δ∂xx

]
.
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The above system can be written in the abstract framework

d
dt

U = AγU +e−γtAF(U)

Aγ has the same properties fo A0 for γ small. From Duhamel’s formula
we have

U(t) = etAγU0 +
∫ t

0
e−γse(t−s)AγAF(U(s)) ds.

If for the initial data

U0 =

(
η0− η̃0

u0− ũ0

)
We will show that this system has global solution and the solution is
bounded, that is, ‖U(t)‖ ≤ C, for all t ≥ 0. This means that

‖eγt(η− η̃0)‖Hs(T)+‖eγt(u− ũ0)‖Hs(T) ≤ C.
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