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The Nonlinear ILW System

We consider the nonlinear ILW system

ne = [(1—om)ulx
u = T]X—(XUUX

with initial data
n(x,0) =Mo(x), u(x,0) = to(x).
t denote the time variable and the spatial variable x stands in

R or T =[—m,n] (periodic functions).
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Questions

@ Existence of local solutions?
© Blow up? or Global solutions?
© Other properties?
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A Friendly System
A system with more properties is given by

ne = [(1—an)ulx
U = Mx—owuy+ M(u)+ N(u)

where M(u) denote dispersive terms and N(u) denote dissipative
terms.

@ Some dispersive terms are
U, H(ux), T(ux), U, etc.
@ Some dissipative terms are

Ouxy, H(ux), T(ux), —Uxxx, etc.
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Our problem
We will study the following nonlinear system

ne = [(1—om)ulx
U = TMx— OUUy + OUyy

with initial data
n(x,0) =Mo(x), u(x,0) = to(x).
where the spatial variable stands at

x € T=[—mmn] (periodic solutions).
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Questions

@ Existence of local solutions?

© Blow up? or Global solutions?

© Smoothing properties?

© Asymptotic behavior?

@ Who is the limit?

@ Speed of this asymptotic behavior?
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The nonlinear system can be written in the abstract framework
d

where
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We will work in the space
H® = H*(T) x H*(T), s>0
with the the inner product
(Ui, Uz2) = M1,M2) s(T) + (U1, U2) s (Tr) -
This operators are defined in
D(A) =HST", D(Ag) = {U € H®: Ay(U) € H}
and

D(F) =H® (fors>1/2).
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Note that D(Ay) is characterized by

D(Ao) = {UcH®:ue H(T),n+du, € HT'(T)}.
is easy to see that
HST(T) x HST3(T) € D(Aq) C HS.

Therefore Ay is densely defined.
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Some properties of the linearized system are preserved by the
nonlinear system. In this case the linearized system is

nl‘ = Uy,
u = nNx+ SUXX.
This system can be written in the abstract framework by

d
Z U= AgU.
dt 0
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Ay is the generator of a contractions semigroup.

We use the following result:

Theorem (Lumer-Phillips)

Let A be a operator in a Hilbert space X. Then, A is the generator of a
contractions semigroup if and only if it is densely defined and
m-dissipative.

Definition: A is m-dissipative if
Re(AU,U)x <0 and Im(A/l—A)=X

for some A > 0.
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Proof
We have

Re(AgU, U) = —8]|uy||? < 0,

then, the operator A, is dissipative. Let F € H?, solving the equation
(I—Ag)U = F is equivalent to solve (I — Ag)U=F. lf u=7, o = i is
equivalent to solve the system
U—iko =
o —ik(u+idkw) = g

where (f,g) = F. The solutions are

(1+8k?)f+ ikg g+ ikf

0=——3—>.
14+0K2+k2 14 8k2 + k2
after some computations we verify U € D(Ay).
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With the above theorem for each initial data Uy € D(Ay), we have a
unique global solutions U(t) = et®o Uy for the linearized system in the
space

U € G([0, [, D(A0)) N C' ([0, o[, T?).
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The semigroup {e'*0} ~ is analytic.

we use the following result:

Theorem (a particular case of this theorem is proved in Liu’s book)

Let A the generator of a contractions semigroup {e'*} . If the
following conditions

Q@ p(A) DR\ {0} and
Q |R(iMA)| < ‘% forall A € R, A #0

are satisfied, then {e'*} ¢ is an analytic semigroup.
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Proof
We will use the discrete Fourier transform to show this theorem. If
(u, ) denote the Fourier transform of U = (n,u). The system
(iM—Ag)U = F, for A € R is satisfied if
i—iko = f,
iAo — ik(u+idkw) = g.

Solving this equations we have

_i(A—iBK?)f + ikg _ iLg + ikf
B e —isken+ke O sk + k2
After some computations we have
C
IU]| < WIIFIL A #0.

From this estimate we conclude that
p(Ao) DR\ {0} and ||7u(i7»I—A0)*1 |<C
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Returning to the nonlinear system

Applying the technique of parameters variations, the solution of the
nonlinear system must satisfy the Duhamel’s formula

t
U(1) = et Uy + / =% AR(U(s)) ds
0
If we consider the operator
t
(GU)(t) = 6™ Uy + / (=M AR(U(s)) ds
0

we use some theorem of fixed point to find solutions of the nonlinear
system.
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Because AAg = AgA in D(Ag) N D(A) we can verify that A commute
with e(t=$)40 em D(A), and in this case

t
(GU)(t) = e™oUp+ / Aelt-940R(U(s)) ds
0
t
— o+ / AeMF(U(t—s)) ds.
0
Difficulty: unfortunately the operator Aet™ plow up at t = 0. | explain:

it can be show that the function t — Ae'° are continuous in L(IH®) for
t > 0. The blow up is consequence of this fact

Aett — A, when t—0" and A¢L(H®).
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Therefore we need some kind control on ||Ae'?|| near to t = 0.
It is known that Age’® is a limited operators for t > 0 and

c
[Agete|| < o> 0,

Because the operator A is more “weak” than Ay, it is possible to show
the same inequality, that is

C
et <2, t>0,

but this do not help me.

higidio@ufpr.br UFPR



There exist © €]0, 1[ such that

C
et < =

Corollary

we have the following estimate

t C
/HAeSAUH ds < o170, >0,
! —
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Some estimates for the nonlinear term
[ —omu _|—ow  —om
F(U) = <—ocu2/2> = DRU)= [ 0 —ocu}

Therefore || DF(U)|| < CJ|U||. Since
F(U) —TF(Uy) = /01 DF (Us + r(Uz — Uy)) (U2 — Uy) df,
it follows that
[F(Uz) = F(Uy)[| < C(l| U + [ Uz | Uz = Us .

Consequently, if ||U; — Up|| < R, ||U> — Up|| < R for some Uy, we have

[F(Uz) = F(U1)]| < C(R+[|Uol[)| U2 — Us [

higidio@ufpr.br UFPR



Theorem (Local solutions)

For Uy € D(Ay), the nonlinear system has a unique solution em
C([0, T],HS) for some T >0

Proof
Let T > 0, R > 0, we consider the subset of the space C([0, T], H®):

My = {U € ([0, T],H®) : U(0) = Up, U(t) € Br(Up)}-

We define the operator G : My — C(([0, T],H®) given by

GU)(t) = e’A°U0+/0tAeSA°F(U(t— 5)) ds.
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we have

1G(U)(t) — Lol
< He“&"Uo—UolH/0 1ae™ || (|IF(U(t—s)) = F(Uo)ll +[IF(Lol)) s

IN

t
oot~ tal+ ([ ises* os ) {CA(R-+ bl +1F(0h1 )

le*e Up — Lol + C(8)t"~° {CR(R+ || o|) + | F(Uoll} -

IN

Taking T small we have
HG(U)(t) - UOH <R, Vte [Oa T]

This shows that G(M 1) C My for T small.
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On the other hand,

IG()(0) - G0
< [ IaclIFst— )~ F(U(t- )] 0
< ([ hme o5) clR+ B - Ullogonzs
< CO)' P (R+ [l Uz — Ut (o, 11.:9)-

Taking T small we have that G is a contraction operator.
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Questions

@ Existence of local solutions? OK

© Blow up? or Global solutions? still trying!
© Smoothing properties? it's possible

© Asymptotic behavior?

@ Who is the limit?

@ Speed of this asymptotic behavior?
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Asymptotic behavior

If (Neo(X), teo(X)) is the limit of the solutions (n(x,t),u(x,t)) when
t — o0, then (N, U ) is the solution of the stationary system

[(1—om)ulx = o,
T]X—(XUUX+8UXX -

But the solutions of this this system are constants. Therefore Ne, Us
are constants. On the other hand, from the preserved amounts

T

/n n(x,t) dx = /T;no(x) ax, /Tc u(x,t) dx :/ Up(x) dx

—T —T —T

we conclude that
1 T 1 ¥

o — d, oo —
Nee =5 [ o) d we=on [
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If we introduce the notation

/~7:l/7c h(x) dx,

2% J x

the space H3(T) = {h € H5(T) : h= 0} is a closed subspace of
H#(T). Consequently, the space

Hg = Hs(T) x H(T)

is a closed subspace of H®. Therefore, it is Hilbert subspace.
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Now, note that, if (n, u) € H? is a solution of the nonlinear system if
and only if (N — Mo, u— o) is a solution of the following auxiliary
nonlinear system

Nt = PBiMx+Baux —a(nu)x,
ur = BaNx+ Baux — auuy + duxy,

where
Bi =Ps=—ally, Bo=1—0fo, Pz=1.
Moreover, we have

(M —"o,u—Tp) € Hy.
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The auxiliary system can be write as

d

where

_[9x O _ |B10x B20x [ —onu
A—[o aj’ AO—{BSaX B4ax+aaxx]’ FU_(—au2/2,>

with domains

D(A) =HST", D(Ag) = {U € H*: Ayg(U) € H}
D(F)=H* (s>1/2)
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Properties of the new operator A

@ Ay is a semigroup of contractions {e'9} - in the space H® with
the appropriate inner product.

© The subspace Hj is invariant for this semigroup. That is,
e'ho(HS) C HS.

© The semigroup {e'®0} ;> is analytic in HS.

© The semigroup {e’AO},zo is analytic and exponentially stable in
HS. (||e' ] < Me™Y, y> 0).

Q |Ae'| < ,Ee’ for some 6 €]0, 1]

Thus, we have the local solutions for the auxiliary system in H?.
Global solution? still trying!

higidio@ufpr.br UFPR



For the solutions of the nonlinear system we have

M —Toll sy + [[u = Toll ps(Ty < Ce ™.

where the constant C depends of the initial data.

Proof

We multiply the auxiliary system by e"'. Thus, the functions
(e"'n, e"u) satisfy the following system

Mt = (B +y)Nx+Boux — e ' (Mu)x,
u = PBaNx+ (Ba+7Y)ux — ce " uuy + Suyy.
The operator of the linear part of this system is

A, = (B1+Y)ax B2ax
Tl Bedx (Bat1)ox+80x ]
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The above system can be written in the abstract framework

d
ik AyU+e "AF(U)

A, has the same properties fo Ag for y small. From Duhamel’s formula
we have

t
U(t) = 61U + / e Bel=A A F(U(s)) ds.
0
If for the initial data
Up = (ﬂo - 1N]o>
Uo — Uo

We will show that this system has global solution and the solution is
bounded, that is, ||U(t)|| < C, for all t > 0. This means that

1" (M — o) | () + 11€" (u— To) | () < C.
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