An introduction to Gevrey Spaces.

Fernando de Ávila Silva Federal University of Paraná - Brazil

Seminars on PDE's and Analysis

(UFPR-BRAZIL)

April 2017 - Curitiba 1 / 25

The Heat Operator

Let L be the heat operator

$$L = \frac{\partial}{\partial_x} - \frac{\partial^2}{\partial_{t^2}}, \ (t, x) \in \mathbb{R}^2.$$

Its fundamental solution $(L(E) = \delta)$ is given by

$$E(t,x) = \begin{cases} (4\pi x)^{-1/2} e^{-t^2/4x}, & \text{if } x > 0, \\ 0, & \text{if } x \le 0, \end{cases}$$

イロト イポト イヨト イヨト

We observe that:

<ロ> <四> <四> <四> <三</p>

We observe that:

- E(t, x) is not analytic for x = 0, however, is C^{∞} in $\mathbb{R}^2 \{0\}$;
- Then, there are solutions of the homogeneous equation Lu = 0 which are not analytic in general, though always C[∞];

A B A B A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

We observe that:

- E(t,x) is not analytic for x = 0, however, is C^{∞} in $\mathbb{R}^2 \{0\}$;
- Then, there are solutions of the homogeneous equation Lu = 0 which are not analytic in general, though always C[∞];
- Fixed a compact $K \subset \mathbb{R}^2$, $0 \notin K$, we obtain

 $|\partial^{\alpha} E(x)| \leq C^{|\alpha|+1} (\alpha!)^2.$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

<ロ> <四> <四> <四> <三</p>

- Main definitions:
 - (a) The spaces $\mathcal{D}'(\mathbb{T}^n)$ and $C^{\omega}(\mathbb{T}^n)$;
 - (b) Fourier coefficients and the spaces C^{∞} , C^{ω} and \mathcal{D}' ;

• • • • • • • • • • • •

- Main definitions:
 - (a) The spaces $\mathcal{D}'(\mathbb{T}^n)$ and $C^{\omega}(\mathbb{T}^n)$;
 - (b) Fourier coefficients and the spaces C^{∞} , C^{ω} and \mathcal{D}' ;
- **2** Global Regularity in C^{∞} and C^{ω} ;

• • • • • • • • • • • • • •

- Main definitions:
 - (a) The spaces $\mathcal{D}'(\mathbb{T}^n)$ and $C^{\omega}(\mathbb{T}^n)$;
 - (b) Fourier coefficients and the spaces C^{∞} , C^{ω} and \mathcal{D}' ;
- **2** Global Regularity in C^{∞} and C^{ω} ;
- Solution The Gevrey spaces $G^{s}(\mathbb{T}^{n})$:
 - (a) Definitions and some properties;
 - (b) The space of \mathcal{D}'_s of ultradistributions;

• • • • • • • • • • • • •

- Main definitions:
 - (a) The spaces $\mathcal{D}'(\mathbb{T}^n)$ and $C^{\omega}(\mathbb{T}^n)$;
 - (b) Fourier coefficients and the spaces C^{∞} , C^{ω} and \mathcal{D}' ;
- **2** Global Regularity in C^{∞} and C^{ω} ;
- Solution The Gevrey spaces $G^{s}(\mathbb{T}^{n})$:
 - (a) Definitions and some properties;
 - (b) The space of \mathcal{D}'_s of ultradistributions;
- Some applications to Global Regularity in G^s;

< ロ > < 同 > < 回 > < 回 > < 回 >

Main definitions

Notations

• $\mathbb{T} = \mathbb{R}/2\pi\mathbb{Z}$ stands for the flat torus;

2

<ロト < 四ト < 三ト < 三ト

Notations

- $\mathbb{T} = \mathbb{R}/2\pi\mathbb{Z}$ stands for the flat torus;
- $C^{\infty}(\mathbb{T}^n)$ is the space of smooth functions $f : \mathbb{T}^n \to \mathbb{C}$ (may see as a 2π periodic function $f : \mathbb{R}^n \to \mathbb{C}$);

Notations

- $\mathbb{T} = \mathbb{R}/2\pi\mathbb{Z}$ stands for the flat torus;
- $C^{\infty}(\mathbb{T}^n)$ is the space of smooth functions $f : \mathbb{T}^n \to \mathbb{C}$ (may see as a 2π periodic function $f : \mathbb{R}^n \to \mathbb{C}$);
- **(3)** $\mathcal{S}(\mathbb{T}^n)$ the spaces of functions in $C^{\infty}(\mathbb{T}^n)$ such that

 $\sup_{x\in\mathbb{T}^n}|x^\alpha\partial^\alpha f(x)|<\infty$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Notations

- $\mathbb{T} = \mathbb{R}/2\pi\mathbb{Z}$ stands for the flat torus;
- $C^{\infty}(\mathbb{T}^n)$ is the space of smooth functions $f : \mathbb{T}^n \to \mathbb{C}$ (may see as a 2π periodic function $f : \mathbb{R}^n \to \mathbb{C}$);
- **6** $\mathcal{S}(\mathbb{T}^n)$ the spaces of functions in $C^{\infty}(\mathbb{T}^n)$ such that

 $\sup_{x\in\mathbb{T}^n}|x^\alpha\partial^\alpha f(x)|<\infty$

• $C^{\omega}(\mathbb{T}^n)$ is the space of functions in $C^{\infty}(\mathbb{T}^n)$ such that $\exists c > 0$ with

$$\sup_{x\in\mathbb{T}^n}|\partial^{\alpha}f(x)|\leqslant C^{|\alpha|+1}\alpha!$$

イロト 不得 とくき とくき とうき

Fourier Series on $C^{\infty}(\mathbb{T}^n)$

Given $f \in C^{\infty}(\mathbb{T}^n)$ we can write

$$f(x) = \sum_{\xi \in \mathbb{Z}^n} \widehat{f}(\xi) e^{ix \cdot \xi},$$

where
$$\widehat{f}(\xi) = (2\pi)^{-n} \int_{\mathbb{T}^n} e^{-ix \cdot \xi} f(x) dx.$$

<ロ> <四> <四> <四> <三</p>

Fourier Series on $C^{\infty}(\mathbb{T}^n)$

Given $f \in C^{\infty}(\mathbb{T}^n)$ we can write

$$f(x) = \sum_{\xi \in \mathbb{Z}^n} \widehat{f}(\xi) e^{ix \cdot \xi},$$

where
$$\widehat{f}(\xi) = (2\pi)^{-n} \int_{\mathbb{T}^n} e^{-ix \cdot \xi} f(x) dx.$$

Theorem

Given a sequence $\{c_{\xi}\}_{\xi\in\mathbb{Z}^n}$ we obtain an element

$$f = \sum_{\xi \in \mathbb{Z}^n} c_{\xi} e^{ix \cdot \xi} \in C^{\infty}(\mathbb{T}^n)$$

if, and only if, for each $N \in \mathbb{N}$ *there exists* C > 0 *such that*

$$|c_{\xi}| \leq C|\xi|^{-N}, \ |\xi| \to \infty.$$

By $\mathcal{D}'(\mathbb{T}^n)$ we set the space of continuous linear operators $u : \mathbb{C}^{\infty}(\mathbb{T}^n) \to \mathbb{C}$, where continuous mean: $\exists C > 0$ and $m \in \mathbb{N}$ such that

$$|u(\varphi)| \leqslant C \sup_{\alpha \leqslant m} \sup_{x \in \mathbb{T}^n} |\partial^{\alpha} \varphi(x)|, \ \forall \varphi \in C^{\infty}(\mathbb{T}^n).$$

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

By $\mathcal{D}'(\mathbb{T}^n)$ we set the space of continuous linear operators $u : \mathbb{C}^{\infty}(\mathbb{T}^n) \to \mathbb{C}$, where continuous mean: $\exists C > 0$ and $m \in \mathbb{N}$ such that

$$|u(\varphi)| \leqslant C \sup_{\alpha \leqslant m} \sup_{x \in \mathbb{T}^n} |\partial^{\alpha} \varphi(x)|, \ \forall \varphi \in C^{\infty}(\mathbb{T}^n).$$

Example

If $f \in L^p(\mathbb{T}^n)$ we obtain $u_f \in \mathcal{D}'(\mathbb{T}^n)$ by defining

$$u_f(\varphi) = \int_{\mathbb{T}^n} f(x)\varphi(x)dx, \ \varphi \in C^\infty(\mathbb{T}^n).$$

(UFPR-BRAZIL)

• • • • • • • • • • • • • •

By $\mathcal{D}'(\mathbb{T}^n)$ we set the space of continuous linear operators $u : \mathbb{C}^{\infty}(\mathbb{T}^n) \to \mathbb{C}$, where continuous mean: $\exists C > 0$ and $m \in \mathbb{N}$ such that

$$|u(\varphi)| \leqslant C \sup_{\alpha \leqslant m} \sup_{x \in \mathbb{T}^n} |\partial^{\alpha} \varphi(x)|, \ \forall \varphi \in C^{\infty}(\mathbb{T}^n).$$

Example

If $f \in L^p(\mathbb{T}^n)$ we obtain $u_f \in \mathcal{D}'(\mathbb{T}^n)$ by defining

$$u_f(\varphi) = \int_{\mathbb{T}^n} f(x)\varphi(x)dx, \ \varphi \in C^\infty(\mathbb{T}^n).$$

Example

If $u \in \mathcal{D}'(\mathbb{T}^n)$ we obtain $\partial^{\alpha} u \in \mathcal{D}'(\mathbb{T}^n)$ by defining

$$\partial^{\alpha} u = (-1)^{|\alpha|} u(\partial^{\alpha} \varphi)$$

A D N A B N A B N

Fourier Series on $\mathcal{D}'(\mathbb{T}^n)$

Given $u \in \mathcal{D}'(\mathbb{T}^n)$ we can write

$$u=\sum_{\xi\in\mathbb{Z}^n}\widehat{u}(\xi)e^{ix\cdot\xi},$$

where $\widehat{u}(\xi) = (2\pi)^{-n} u(e^{-ix \cdot \xi})$.

イロト 不得 とくき とくき とうき

Fourier Series on $\mathcal{D}'(\mathbb{T}^n)$

Given $u \in \mathcal{D}'(\mathbb{T}^n)$ we can write

$$u=\sum_{\xi\in\mathbb{Z}^n}\widehat{u}(\xi)e^{ix\cdot\xi},$$

where
$$\widehat{u}(\xi) = (2\pi)^{-n} u(e^{-ix \cdot \xi}).$$

Theorem

Given a sequence $\{c_{\xi}\}_{\xi\in\mathbb{Z}^n}$ we obtain an element

$$u=\sum_{\xi\in\mathbb{Z}^n}c_\xi e^{ix\cdot\xi}\in\mathcal{D}'(\mathbb{T}^n)$$

if, and only if, there exists $N \in \mathbb{N}$ *and* C > 0 *such that*

$$|c_{\xi}| \leqslant C |\xi|^N, \ |\xi| \to \infty$$

A D F A D F A D F A

Hypoellipticity

Let m be a positive integer and P the partial differential operator

$$P = P(x, D) = \sum_{|\alpha| \leq m} a_{\alpha}(x) \partial_x^{\alpha}, \ x \in \mathbb{T}^n,$$

where α is a multindex in \mathbb{Z}_+^n . We say that P(x, D) is:

(GH) if conditions

$$u \in \mathcal{D}'(\mathbb{T}^n)$$
 and $Pu \in C^{\infty}(\mathbb{T}^n)$ imply $u \in C^{\infty}(\mathbb{T}^n)$;

(GAH) if conditions

$$u \in \mathcal{D}'(\mathbb{T}^n)$$
 and $Pu \in C^{\omega}(\mathbb{T}^n)$ imply $u \in C^{\omega}(\mathbb{T}^n)$;

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Constant coefficient case

Let $P(D) = \sum_{|\alpha| \leq m} a_{\alpha} \partial_x^{\alpha}$, a_{α} be a constant coefficient operator and

$$P(\xi) = \sum_{|\alpha| \leqslant m} a_{\alpha} \xi^{\alpha}$$

its Fourier symbol.

イロト イポト イヨト イヨト 二日

Constant coefficient case

Let $P(D) = \sum_{|\alpha| \leq m} a_{\alpha} \partial_x^{\alpha}$, a_{α} be a constant coefficient operator and

$$P(\xi) = \sum_{|\alpha| \leqslant m} a_{\alpha} \xi^{\alpha}$$

its Fourier symbol.

Theorem (Greenfield and Wallach (1972))

The operator P(D) is (GH) if, and only if, there are C, M, R > 0 such that

 $|P(\eta)| \ge C |\eta|^M, \ |\eta| \ge R.$

(UFPR-BRAZIL)

April 2017 - Curitiba 10 / 25

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Constant coefficient case

Let $P(D) = \sum_{|\alpha| \leq m} a_{\alpha} \partial_x^{\alpha}$, a_{α} be a constant coefficient operator and

$$P(\xi) = \sum_{|\alpha| \leqslant m} a_{\alpha} \xi^{\alpha}$$

its Fourier symbol.

Theorem (Greenfield and Wallach (1972))

The operator P(D) is (GH) if, and only if, there are C, M, R > 0 such that

 $|P(\eta)| \ge C|\eta|^M, \ |\eta| \ge R.$

Theorem (Greenfield (1972))

The operator P(D) is (GAH) if, and only if, for each $\epsilon > 0$ there exists $C_{\epsilon} > 0$

 $|P(\eta)| \ge e^{-\epsilon|\eta|}, |\eta| \ge C_{\epsilon}.$

Approximation by Rational Numbers

Theorem

The differential operator

$$P = D_t + (\alpha + i\beta)D_x, \ \omega \in \mathbb{C}, \ (t, x) \in \mathbb{T}^2.$$

is (GH) iff, either

(i) $\beta \neq 0$, or

(ii) α is an irrational non-Liouville number, that is, $\exists C, M > 0$ such that

$$|m + \alpha n| \ge C |(m, n)|^M, \ \forall (m, n) \in \mathbb{Z}^2.$$

< ロ > < 同 > < 回 > < 回 > < 回 >

Exponential Approximation by Rational Numbers

Theorem

The differential operator

$$P = D_t + (\alpha + i\beta)D_x, \ \omega \in \mathbb{C}, \ (t, x) \in \mathbb{T}^2.$$

is (GAH) iff, either

(UFPR-BRAZIL)

April 2017 - Curitiba 12 / 25

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Exponential Approximation by Rational Numbers

Theorem

The differential operator

$$P = D_t + (\alpha + i\beta)D_x, \ \omega \in \mathbb{C}, \ (t, x) \in \mathbb{T}^2.$$

is (GAH) iff, either

(i) $\beta \neq 0$, or

(ii) α is irrational non exp-Liouville number, that is, for each $\varepsilon > 0$, $\exists c_{\varepsilon} > 0$ such that

$$|m + \alpha n| \ge c_{\varepsilon} e^{-\varepsilon |(m,n)|}, \ \forall (m,n) \in \mathbb{Z}^2.$$

• • • • • • • • • • • • •

Remark

1 In the constant coefficient case $P(D) = \sum_{|\alpha| \leq m} a_{\alpha} \partial_x^{\alpha}$, a_{α} we have

 $(\mathrm{GH}) \ \Rightarrow \ (\mathrm{GAH}).$

<ロ> <四> <四> <四> <三</p>

Remark

• In the constant coefficient case $P(D) = \sum_{|\alpha| \le m} a_{\alpha} \partial_x^{\alpha}$, a_{α} we have

$$(GH) \Rightarrow (GAH).$$

2 The conversely is false: there exist $\alpha \in \mathbb{R} \setminus \mathbb{Q}$ such that

$$P = D_t + \alpha D_x$$

is (GAH) and non (GH).

イロト 不得 とくき とくき とうき

Remark

• In the constant coefficient case $P(D) = \sum_{|\alpha| \leq m} a_{\alpha} \partial_x^{\alpha}$, a_{α} we have

$$(GH) \Rightarrow (GAH).$$

2 The conversely is false: there exist $\alpha \in \mathbb{R} \setminus \mathbb{Q}$ such that

$$P = D_t + \alpha D_x$$

is (GAH) and non (GH).

() There exist $\alpha \in \mathbb{R} \setminus \mathbb{Q}$ such that

$$P = D_t + \alpha D_x$$

is neither (GH) nor (GAH).

Gevrey class

Gevrey class

For $s \in \mathbb{R}$, with $s \ge 1$, we say that a smooth function $f \in C^{\infty}(\mathbb{T}^n)$ is in the Gevrey class $G^s(\mathbb{T}^n)$ if there exists C > 0 such that

$$\sup_{x\in\mathbb{T}^n}|\partial^{\alpha}f(x)|\leqslant C^{|\alpha|+1}(\alpha!)^s,\ \forall\alpha\in\mathbb{Z}_+^n.$$

In particular, $G^{s}(\mathbb{T}^{n})$ is a Banack space endowed with the norm

$$\|f\|_{s} = \sup_{\alpha \in \mathbb{Z}^{n}_{+}} \left\{ \sup_{x \in \mathbb{T}^{n}} |\partial^{\alpha} f(x)| (\alpha!)^{-s} \right\};$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Remark

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ─臣:

Remark

• For s = 1 we have $G^1(\mathbb{T}^n) = C^{\omega}(\mathbb{T}^n)$. Moreover, since

 $1 \leq s < t \text{ imply } G^s(\mathbb{T}^n) \subsetneq G^t(\mathbb{T}^n),$

we obtain $C^{\omega}(\mathbb{T}^n) \subset G^s(\mathbb{T}^n)$, for all $s \ge 1$;

Remark

For s = 1 we have G¹(Tⁿ) = C^ω(Tⁿ). Moreover, since
1 ≤ s < t imply G^s(Tⁿ) ⊊ G^t(Tⁿ),
we obtain C^ω(Tⁿ) ⊂ G^s(Tⁿ), for all s ≥ 1;

• If $f \in G^{s}(\mathbb{T}^{n})$, then $\partial^{\alpha} f \in G^{s}(\mathbb{T}^{n})$, for any $\alpha \in \mathbb{Z}_{+}^{n}$;

• For s = 1 we have $G^1(\mathbb{T}^n) = C^{\omega}(\mathbb{T}^n)$. Moreover, since

 $1 \leq s < t \text{ imply } G^s(\mathbb{T}^n) \subsetneq G^t(\mathbb{T}^n),$

we obtain $C^{\omega}(\mathbb{T}^n) \subset G^s(\mathbb{T}^n)$, for all $s \ge 1$;

- If $f \in G^{s}(\mathbb{T}^{n})$, then $\partial^{\alpha} f \in G^{s}(\mathbb{T}^{n})$, for any $\alpha \in \mathbb{Z}_{+}^{n}$;
- $G^1(\mathbb{T}^n) \subsetneq \bigcap_{s>1} G^s(\mathbb{T}^n);$

• For
$$s = 1$$
 we have $G^1(\mathbb{T}^n) = C^{\omega}(\mathbb{T}^n)$. Moreover, since

 $1 \leq s < t \text{ imply } G^s(\mathbb{T}^n) \subsetneq G^t(\mathbb{T}^n),$

we obtain $C^{\omega}(\mathbb{T}^n) \subset G^s(\mathbb{T}^n)$, for all $s \ge 1$;

• If $f \in G^{s}(\mathbb{T}^{n})$, then $\partial^{\alpha} f \in G^{s}(\mathbb{T}^{n})$, for any $\alpha \in \mathbb{Z}_{+}^{n}$;

•
$$G^1(\mathbb{T}^n) \subsetneq \bigcap_{s>1} G^s(\mathbb{T}^n);$$

•
$$\bigcup_{s>1} G^s(\mathbb{T}^n) \subsetneq C^\infty(\mathbb{T}^n);$$

The space $\mathcal{D}'_{s}(\mathbb{T}^{n})$

<ロ> <四> <四> <四> <四> <四> <四</p>

By $\mathcal{D}'_{s}(\mathbb{T}^{n})$ we set the space of continuous linear operators $u : G^{s}(\mathbb{T}^{n}) \to \mathbb{C}$, called the space of ultradistributions.

Example

Given $m \in \mathbb{Z}^+$ consider $u = \sum_{|\alpha| \leq m} a_{\alpha} \delta^{\alpha}$, with $a_{\alpha} \in \mathbb{C}$, defined formally by defining

$$u(arphi) = \sum_{|lpha|\leqslant m} a_lpha \partial^lpha arphi(0), \ arphi \in G^s(\mathbb{T}^n).$$

< ロ > < 同 > < 回 > < 回 > < 回 >

◆□▶ ◆舂▶ ◆臣▶ ◆臣▶ 三臣.

• If $u \in \mathcal{D}'(\mathbb{T}^n)$, then the restriction $u \mid_{G^s(\mathbb{T}^n)}$ belongs to $\mathcal{D}'_s(\mathbb{T}^n)$;

<ロ> <四> <四> <四> <四> <四> <四</p>

- If $u \in \mathcal{D}'(\mathbb{T}^n)$, then the restriction $u \mid_{G^s(\mathbb{T}^n)}$ belongs to $\mathcal{D}'_s(\mathbb{T}^n)$;
- Since $G^{s}(\mathbb{T}^{n})$ is dense in C^{∞} , $s \ge 1$, it follows that

$$\mathcal{D}'(\mathbb{T}^n) \subsetneq \mathcal{D}'_s(\mathbb{T}^n).$$

The proper inclusion can be obtained by the last example, since $u \notin S'(\mathbb{T}^n) \subset \mathcal{D}'(\mathbb{T}^n)$. In particular, justifying the name **ultradistribution**.

イロト イポト イヨト イヨト 二日

Theorem

Let $\{C_{\xi}\}_{\xi\in\mathbb{Z}^n}\subset\mathbb{C}$, satisfying

$$|C_{\xi}| \leqslant C e^{-\varepsilon |\xi|^{1/s}}, \forall \xi \in \mathbb{Z}^n,$$

for some $\varepsilon > 0$ and C > 0. Then, there exists $f \in G^{s}(\mathbb{T}^{n})$ with

$$f(x) = \sum_{\xi \in \mathbb{Z}^n} C_{\xi} e^{ix \cdot \xi}.$$

Moreover, $\hat{f}(\xi) = C_{\xi}$.

(UFPR-BRAZIL)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Theorem

Let $\{C_{\xi}\}_{\xi\in\mathbb{Z}^n}\subset\mathbb{C}$, satisfying

$$|C_{\xi}| \leqslant C e^{-\varepsilon |\xi|^{1/s}}, \forall \xi \in \mathbb{Z}^n,$$

for some $\varepsilon > 0$ and C > 0. Then, there exists $f \in G^{s}(\mathbb{T}^{n})$ with

$$f(x) = \sum_{\xi \in \mathbb{Z}^n} C_{\xi} e^{ix \cdot \xi}.$$

Moreover, $\widehat{f}(\xi) = C_{\xi}$.

Theorem

If either $u \in \mathcal{D}'_{s}(\mathbb{T}^{n})$, or $u \in \mathcal{D}'(\mathbb{T}^{n})$, then $u \in G^{s}(\mathbb{T}^{n})$ if, and only if, there exists $\varepsilon > 0$ and $c_{\varepsilon} > 0$

$$|c_{\xi}| \leqslant c_{\varepsilon} e^{-\varepsilon |\xi|^{1/s}}, \ \forall \xi \in \mathbb{Z}^n$$

Hypoellipticity

A partial differential operator $P(x,D) = \sum_{|\alpha| \leq m} a_{\alpha}(x) \partial_x^{\alpha}$, with $a_{\alpha} \in C^{\omega}(\mathbb{T}^n)$, is said to be globally G^s hypoelliptic (G^sH) if

 $u \in \mathcal{D}'_{s}(\mathbb{T}^{n})$ and $Pu \in G^{s}(\mathbb{T}^{n})$ imply $u \in G^{s}(\mathbb{T}^{n})$;

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Hypoellipticity

A partial differential operator $P(x, D) = \sum_{|\alpha| \leq m} a_{\alpha}(x) \partial_x^{\alpha}$, with $a_{\alpha} \in C^{\omega}(\mathbb{T}^n)$, is said to be globally G^s hypoelliptic $(G^s H)$ if

 $u \in \mathcal{D}'_{s}(\mathbb{T}^{n})$ and $Pu \in G^{s}(\mathbb{T}^{n})$ imply $u \in G^{s}(\mathbb{T}^{n})$;

Remark

We can replace this definition by

$$u \in \mathcal{D}'(\mathbb{T}^n)$$
 and $Pu \in G^s(\mathbb{T}^n)$ imply $u \in G^s(\mathbb{T}^n)$,

which is more weaker.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Gevrey Hypoellipticity

Constant coefficient case

Theorem

The operator $P(D) = \sum_{|\alpha| \leq m} a_{\alpha} \partial_x^{\alpha}$, a_{α} is $G^s H$ if, and only if, for each $\epsilon > 0$ there exists $C_{\epsilon} > 0$ $|P(\xi)| \ge e^{-\epsilon |\xi|^{1/s}}, |\xi| \ge C_{\epsilon}.$

< ロ > < 同 > < 回 > < 回 > < 回 >

Gevrey Hypoellipticity

Constant coefficient case

Theorem

The operator $P(D) = \sum_{|\alpha| \leq m} a_{\alpha} \partial_x^{\alpha}$, a_{α} is $G^s H$ if, and only if, for each $\epsilon > 0$ there exists $C_{\epsilon} > 0$ $|P(\xi)| \ge e^{-\epsilon |\xi|^{1/s}}, |\xi| \ge C_{\epsilon}.$

Example

The operator $P = D_t - \alpha D_x$, $\alpha \in \mathbb{R}$, is $G^s H$ if, and only if, $\epsilon > 0$ there exists $C_{\epsilon} > 0$ $|m - \alpha n| \ge e^{-\epsilon |\xi|^{1/s}}, |\xi| \ge C_{\epsilon}.$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

<ロ> <四> <四> <四> <四> <四> <四</p>

We observe that, if $1 \leq s < t$, then $G^{s}H$ implies $G^{t}H$. Thus, we obtain

 $GH \Rightarrow GAH \Rightarrow G^{s}H.$

- 34

・ロト ・ 四ト ・ ヨト ・ ヨト

We observe that, if $1 \le s < t$, then $G^{s}H$ implies $G^{t}H$. Thus, we obtain

 $GH \Rightarrow GAH \Rightarrow G^{s}H.$

For the heat operator (introduction) he obtain solutions of Lu = 0 that are not C^ω, but are in G²;

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

We observe that, if $1 \leq s < t$, then $G^{s}H$ implies $G^{t}H$. Thus, we obtain

 $GH \Rightarrow GAH \Rightarrow G^{s}H.$

- For the heat operator (introduction) he obtain solutions of Lu = 0 that are not C^ω, but are in G²;
- There exist equations $P(D)u = f \in G^s$ without solutions in \mathcal{D}' with solutions in \mathcal{D}'_s ;

イロト 不得 とくき とくき とうき

Remark (P(D) with variable coefficients)

We point out that that $G^{s}H \neq C^{\infty}H$. The following theorem is very interesting:

・ロト ・ 四ト ・ ヨト ・ ヨト

Remark (P(D) with variable coefficients)

We point out that $G^{s}H \neq C^{\infty}H$. The following theorem is very interesting:

Theorem (Gramchev-Popivanov-Yoshino)

Fixed a number $1 \leq \sigma < \infty$, there exist a real-valued function $a \in C^{\omega}$ such that

$$P = D_t - a(t)D_x$$

is $G^{s}H$, for $1 \leq s \leq \sigma$, while is not $G^{s}H$ for $1 \leq \sigma < s$.

• Himonas and Petronilho have works in the investigation of the problem

$$GH \Rightarrow G^{s}H,$$

for operators with non-constant coefficients. For instance, they solve the problem for

$$P = \partial_t^2 + [\partial_x - a(t)\partial_y]^2, \ (t, x, y) \in \mathbb{T}^3.$$

• • • • • • • • • • • • •

Bibliography

- Greenfield, Stephen J., and Nolan R. Wallach:. *Global hypoellipticity and Liouville numbers*. Proceedings of the American Mathematical Society 31.1 (1972): 112-114.
- Greenfield, Stephen J., and Nolan R. Wallach. *Remarks on global hypoellipticity*. Transactions of the American Mathematical Society 183 (1973): 153-164.
- Stephen J. Greenfield. *Hypoelliptic Vector Fields and Continued Fractions*. Proceedings of the American Mathematical Society, Vol. 31, No. 1 (Jan., 1972), pp. 115-118.
- A. Himonas, and G. Petronilho. On gevrey regularity of C^{∞} hypoelliptic operators. J.D.E, 207 (2004), 267-284.

Rodino L. Linear Partial Differential Operators in Gevrey Spaces WSP, 1993.

Gramchev, T., Popivanov, P., Yoshino, M. *Some examples of Global Gevrey Hypoellipticity and Solvability* Proc. Japan Acad, 69, 1993.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Thank you !!!

(UFPR-BRAZIL)

April 2017 - Curitiba 25 / 25

2

<ロト < 四ト < 三ト < 三ト